TRAFFIC IMPACT ASSESSMENT

CLAYVILLE EXTENSIONS 50 AND 71

NOVEMBER 2015

TRAFFIC IMPACT ASSESSMENT CLAYVILLE EXTENSIONS 50 AND 71
Valumax Midrand (Pty) Ltd PO Box 78772 Sandton 2146
Tel: 0114638882
Fax: 0114638838
Email: helgardt@valumax.co.za

Issue 1
Project no: 19447
Date: November 2015

```
WSP | Parsons Brinckerhoff
314 Glenwood Road, Lynnwood Park, Pretoria,
South Africa }008
Postnet Suite 287, Private Bag X025, Lynnwood Ridge, 0040
Tel: +27 (0) 127621200
Fax: +27 (0) 127621301
www.wspgroup.com
www.pbworld.com
```


QUALITY MANAGEMENT

ISSUE/REVISION	FIRST ISSUE	REVISION 1	REVISION 2	REVISION 3
Remarks	Draft			
Date	November 2015			
Prepared by	Christopher E Nair Civil Engineer			
Signature				
Checked by	Eben Kotze Pr Tech Eng			
Signature	quatys			
Authorised by	Eben Kotze Pr Tech Eng			
Signature	quatye			
Project number				
File reference	Z:\19000119447 Gle Study	Austin, Ptn 18	Reports\11.1	ReportsITraffic Impact

Certification

It is herewith certified that this Traffic Impact Assessment has been prepared according to requirements of the South African Traffic Impact and Site Traffic Assessment Manual.

Signatory: \qquad Date: 10/11/15 ECSA no: 200370133

WSP Contact Person	
Name :	Eben Kotze
Address :	Postnet Suite 287, Private Bag X025, Lynnwood Ridge, 0040
Telephone :	0127621200
Cellphone $:$	0835641563
Email :	Eben.Kotze@wspgroup.co.za

Quality checklist

Items	Initial
Project Quality form	\boldsymbol{J}
Report \& Figures reviewed	\boldsymbol{J}
Authorisation for distribution	\boldsymbol{J}

PRODUCTION TEAM
WSP | PARSONS BRINCKERHOFF
Function Name
Civil Engineer
Christopher E Nair
Name
Eben Kotze Pr. Tech Eng

Eben Kotze Pr. Tech Eng

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 EXTENT OF THE DEVELOPMENT. 1
1.3 PHASING OF THE DEVELOPMENT 2
1.4 APPROVAL OF SUBMISSION 2
2 DATA COLLECTION 3
2.1 SITE VISIT 3
2.2 TRAFFIC COUNT DATA. 3
2.3 LATENT DEVELOPMENTS 3
CLAVILLE EXTENSIONS 52 \& 66 3
TEMBISA EXTENSION 25 4
REMAINDER OF PORTION 122 OF THE FARM OLIFONSTFONTEIN 402-JR 4
STERKFONTEIN EXTENSION 12. 4
CLAYVILLE EXTENSION 45 4
3 SURROUNDING ROAD NETWORK \& STUDY AREA 5
3.1 ROAD NETWORK \& MASTER PLANNING 5
MUNICIPAL PLANNING 5
PROVINCIAL AND NATIONAL PLANNING 5
3.2 SURROUNDING ROAD NETWORK 5
3.3 DETERMINATION OF THE STUDY AREA 5
4 SITE ACCESS 7
4.1 SITE ACCESS 7
5 EXISTING TRAFFIC VOLUMES 8
5.1 GENERAL 8
5.2 OLIFANTSFONTEIN ROAD (R562)/OLIFANTSFONTEIN ROAD INTERSECTION 8
5.3 OLIFANTSFONTEIN ROAD (R562)/MAIN ROAD (FUTURE K111) INTERSECTION 8
5.4 MAIN ROAD (FUTURE K111)/THABANA NTLENYANA DRIVE INTERSECTION. 8
5.5 MAIN ROAD (FUTURE K111)/RIVERSIDE STREET INTERSECTION. 8
5.6 MAIN ROAD (FUTURE K111)/KAREE STREET INTERSECTION 9
5.7 DALE ROAD/ARCHERFISH DRIVE INTERSECTION. 9
5.8 DALE ROAD/MODDERFONTEIN ROAD INTERSECTION 9
5.9 DALE ROAD/OLD PRETORIA ROAD INTERSECTION. 9
6 DEVELOPMENT TRIP GENERATION AND TRAFFIC VOLUME SCENARIOS 10
6.1 ADJUSTMENT FACTORS 10
MIXED USE DEVELOPMENTS (MUD). 10
LOW VEHICLE OWNERSHIP (LVO) \& VERY LOW VEHICLE OWNERSHIP (VLVO) 10
TRANSIT NODE OR CORRIDORS 10
6.2 TRIP SUMMARY 11
6.3 GROWTH RATE 11
6.4 TRAFFIC VOLUME SCENARIOS 11
6.5 TRIP DISTRIBUTION AND ASSIGNMENT 12
7 TRAFFIC IMPACT AND CAPACITY ANALYSIS 13
7.1 SCENARIOS ANALYSED 13
7.2 CAPACITY ANALYSIS 13
7.2.1 Olifantsfontein Road (R562)/Olifantsfontein Road Intersection 13
7.2.2 Olifantsfontein Road (R562)/Main Road (Future K111) Intersection 18
7.2.3 Main Road (Future K111)/Thabana Ntlenyana Drive Intersection. 21
7.2.4 Main Road (Future K111)/Riverside Street intersection 25
7.2.5 Main Road/Karee Street Intersection 29
7.2.6 Dale Road (Future K109)/Archerfish Drive Intersection 33
7.2.7 Dale Road/Modderfontein Road Intersection 37
7.2.8 Old Pretoria Road/Dale Road/Kerk Street Intersection 41
7.2.9 Olifantsfontein Road (R562)/ K109 (Intersection A). 44
7.2.10 Access Road/K109 (Intersection B) 45
7.2.11 Access Road/K109 (Intersection C) 46
8 ROAD AND INTERSECTION UPGRADES 47
8.1 GENERAL 47
9 NON-MOTORISED AND PUBLIC TRANSPORT 49
9.1 BACKGROUND 49
9.2 EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES 49
MINIBUS TAXIS 49
PUBLIC TRANSPORT LAY-BYS 49
9.3 PROPOSED / NEW FACILITIES 49
PUBLIC TRANSPORT LAY-BYS 49
PAVED SIDEWALKS 49
10 CONCLUSIONS AND RECOMMENDATIONS 50
11 REFERENCES 52

LIST OF ABBREVIATIONS

GDRT Gauteng Provincial Department of Roads and Transport
EM M Ekurhuleni M etropolitan M unicipality
COTO Committee of Transport Officials
GLA Gross Leasable Area
LOS Level of Service
LVO Low Vehicle Ownership
MUD Mixed Use Development
SDP Site Development Plan
SEC Seconds
SIDRA Micro-analytical traffic evaluation
TM H Technical M ethods for Highways
V/C Volume/Capacity ratio
VPH Vehicles per hour
VLVO Very Low Vehicle Ownership

LIST OF FIGURES

FIGURE 1: LOCALITY PLAN
FIGURE 2: SITE AERIAL VIEW \& KEY PLAN
FIGURE 3: EXISTING 2015 PEAK HOUR TRAFFIC VOLUMES
FIGURE 4a: LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES - CLAYVILLE EXTENSIONS 52 \& 66
FIGURE 4b: LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES - TEMBISA EXTENSION 25

FIGURE 4c: LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES - REMAINDER OF PORTION 122 OLIFANTSFONTEIN

FIGURE 4d: LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES - STERKFONTEIN X12
FIGURE 4e: LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES - CLAYVILLE EXTENSION 45

FIGURE 4f: TOTAL LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES
FIGURE 5: 2020 BACKGROUND PEAK HOUR TRAFFIC VOLUMES
FIGURE 6: 2020 BACKGROUND PLUS TOTAL LATENT DEVELOPMENT PEAK HOUR TRAFFIC VOLUMES
FIGURE 7: EXPECTED TRIP DISTRIBUTION FOR THE PROPOSED DEVELOPMENT
FIGURE 8: DEVELOPMENT GENERATED PEAK HOUR TRAFFIC VOLUMES
FIGURE 9: 2020 BACKGROUND PLUS TOTAL LATENT DEVELOPMENT PLUS DEVELOPMENT GENERATED PEAK HOUR TRAFFIC VOLUMES

LIST OF APPENDICES

APPENDIX A-1 SITE DEVELOPMENT PLAN \& SCHEDULE OF RIGHTS TABLES
APPENDIX A-2 ROAD NETWORK PLANNING \& GAUTENG STRATEGIC NETWORK PLAN
APPENDIX A-3 DRAWINGS: INTERSECTION LAYOUTS
APPENDIX A-4 TRIP GENERATION CALCULATIONS
APPENDIX A-1 SITE DEVELOPMENT PLAN \& SCHEDULE OF RIGHTS TABLES
APPENDIX A- 2 ROAD NETWORK PLANNING \& GAUTENG STRATEGIC NETWORK PLAN
APPENDIX A-3 DRAWINGS: INTERSECTION LAYOUTS
APPENDIX A-4 TRIP GENERATION CALCULATIONS

INTRODUCTION

1.1 BACKGROUND

WSP Group Africa (Pty) Ltd. (WSP) has been appointed by Valumax Midrand (Pty) Ltd to undertake a Traffic Impact Assessment for the proposed township developments known as Clayville Extensions 50 and 71. Clayville Extension 50 will be situated on the Remainder of Portion 183 and Portions 30 and 31 of the farm Olifantsfontein 410 JR. Clayville Extension 71 will be situated on Portion 207 (a Portion of Portion 183) of the farm Olifantsfontein 410 JR.

The proposed township developments are bounded by the farm Olifantsfontein 410 JR to the north, Dale Road to the south Clayville Extension 45 Township to the east and Glen Austin Agricultural Holdings to the west. The proposed township developments are within Region B of the northern planning region of the Ekurhuleni Metropolitan Municipality (EMM).

The site is currently undeveloped. The proposed township locality and the surrounding road network are indicated on Figures 1 and 2. The purpose of this traffic impact assessment is to illustrate the proposed developments impact on the surrounding road network and possible mitigation of the anticipated traffic impact. This report also comments on the proposed site accesses and non-motorised and public transport aspects.

Clayville Extensions 50 and 71 together with Clayville Extension 45 form the Clayville/Tembisa Mega Housing Development as announced by the Premier and MEC of Human Settlements and it will assist government to alleviate the critical housing shortage in the Tembisa area in EMM. The funding for the road network and intersection upgrades will be provided by EMM.

1.2 EXTENT OF THE DEVELOPMENT

According to the information provided by the town planner, Clayville Extensions 50 and 71 will comprise of the following land-uses and development extents as shown on Table 1. The trips generated and anticipated by the proposed filling station (4\% to 6\%) are already included in the traffic generated by the residential and business nodes. The trips generated from the proposed crèche/church and clinic/library nodes fall outside the AM and PM peak hours, therefore they have not been included in this traffic assessment. The site development plan and the schedule of rights are contained in Appendix A-1.

Table 1a: Development Extent for Clayville Extension 50

ZONING	EXTENT
Residential 1	595 units
Residential 2	1683 units
Residential 4	2833 units
Business 2	1.63 hectares
Business 3	2.56 hectares
Community Facility (Secondary School)	1200 students
Community Facility (Creche/Church)	3 stands
Social Services (Clinic/Library)	3 stands

Table 1b: Development Extent for Clayville Extension 71

ZONING	EXTENT
Residential 2	2220 units
Residential 4	3814 units
Business 2	4.33 hectares
Community Facility (Primary School)	1200 students
Public Garage (Filling Station)	1 stand
Community Facility (Creche/Church)	7 stands
Social Services (Clinic/Library)	2 stands

1.3 PHASING OF THE DEVELOPMENT

This report presents the traffic impact assessment for the ultimate township establishment of Clayville Extensions 50 and 71. Clayville Extension 50 will not be phased and will only be developed after the development Clayville Extension 71.

Clayville Extension 71 will be phased as follows:

- Phase 1: 749 units (434 residential 2 and 315 residential 4)
- Phase 2: 1295 units (523 residential 2 and 772 residential 4)
- Phase 3: 742 units (480 residential 2 and 262 residential 4)
- Phase 4: 1186 units (274 residential 2 and 912 residential 4) and a public primary school
- \quad Phase 5: 1054 units (257 residential 2 and 797 residential 4)
- Phase 6: 1008 units (252 residential 2 and 756 residential 4) and shopping centre (business 2)

1.4 APPROVAL OF SUBMISSION

This traffic impact assessment report will be subject approval by the relevant roads authorities listed below:
\rightarrow Gauteng Provincial Department of Roads and Transport (GDRT)
\rightarrow Ekurhuleni Metropolitan Municipality (EMM)

2

DATA COLLECTION

2.1 SITE VISIT

During February 2015 a site visit was undertaken for this study and the following was confirmed:
\rightarrow Layouts of intersections considered in the study
\rightarrow Appropriateness of recommended site access
\rightarrow Intersection control for relevant intersections
\rightarrow Presence of existing public transport and non-motorised transport facilities

2.2 TRAFFIC COUNT DATA

Traffic counts were used to estimate the traffic demand and traffic volumes for the proposed development. A traffic count was commissioned by WSP on Thursday $5^{\text {th }}$ February 2015 at the following intersections:
\rightarrow Olifantsfontein Road (R562)/Olifantsfontein Road
\rightarrow Olifantsfontein Road (R562)/Main Road (Future K111)
\rightarrow Main Road (Future K111)/Thabana Ntlenyana Drive
\rightarrow Main Road (Future K111)/Riverside Street
\rightarrow Main Road (Future K111)/Karee Street
\rightarrow Dale Road/Archerfish Drive
\rightarrow Dale Road/Modderfontein Road
\rightarrow Dale Road/Old Pretoria Road
The existing 2015 peak hour traffic volumes are presented in Figure 3.

2.3 LATENT DEVELOPMENTS

Several latent developments are situated within the study area (refer to Figures 4a, 4b, 4c, 4d, $\mathbf{4 e}$ and $\mathbf{4 f}$). The following developments were considered as latent developments in this study:

CLAVILLE EXTENSIONS 52 \& 66

A traffic study for the proposed development known as Clayville Extensions 52 \& 66 was undertaken by E.D.S Transportation Engineers. The development is for the following rights:
$\rightarrow 85000 \mathrm{~m}^{2}$ GLA of Shopping Centre;
$\rightarrow 34000 \mathrm{~m}^{2}$ GLA of Offices;
$\rightarrow 11000 \mathrm{~m}^{2}$ GLA of Motor Dealership
The latent development is expected to fully realise by the year 2020 and the latent trips were taken into consideration in this traffic study.

TEMBISA EXTENSION 25

A traffic study for the proposed development known as Tembisa Extension 25 was undertaken by GIBB Consulting Engineers. The development is for the following rights:
$\rightarrow 1555$ Residential Units with subservient land uses
The latent development is expected to fully realise by the year 2025. For this traffic study, it has been assumed that 50% of the latent trips of Tembisa Extension 25 will be on the road network by the year 2020.

REMAINDER OF PORTION 122 OF THE FARM OLIFONSTFONTEIN 402-JR

A traffic study for the proposed industrial development on Remainder of Portion 122 of the farm Olifantsfontein 402-JR was undertaken by E.D.S Transportation Engineers. The development is for the following rights:
$\rightarrow 43385 m^{2}$ GLA of Industrial Development
The latent development is expected to fully realise by the year 2018 and the latent trips were taken into consideration in this traffic study.

STERKFONTEIN EXTENSION 12

A traffic study for the proposed development known as Sterkfontein Extension 12 was undertaken by E.D.S Transportation Engineers. The development is for the following rights:
$\rightarrow 349622 \mathrm{~m}^{2}$ GLA of Warehousing and Distribution Centre
The latent development is expected to fully realise by the year 2024. For this traffic study, it has been assumed that 60% of the latent trips of Sterkfontein Extension 12 will be on the road network by the year 2020.

CLAYVILLE EXTENSION 45

A traffic study for the proposed development known as Clayville Extension 45 was undertaken by WSP Traffic and Transportation Engineers. The development is for the following rights:

```
->4763m}\mp@subsup{}{}{2}\mathrm{ GLA of Shopping Centre
-> 389 Residential Units (single dwelling units)
->440 Residential Units (apartments and flats)
-1 Public Primary School (1200 students)
->1 Public Secondary School (1200 students)
```

The latent development is expected to fully realise by the year 2020 and the latent trips were taken into consideration in this traffic study.

SURROUNDING ROAD NETWORK \& STUDY AREA

3.1 ROAD NETWORK \& MASTER PLANNING

MUNICIPAL PLANNING

The local roads will include proposed accesses from the provincial roads through the proposed development. The road network planning is contained in Appendix A-2.

PROVINCIAL AND NATIONAL PLANNING

- Planned K111: Provincial dual carriageway road, K111 is planned on the existing Main Road alignment. The existing Main Road is currently operating at capacity. Therefore the planned K111 road will mitigate capacity constraints in the future.
- Planned K109: Provincial dual carriageway road, K109 is planned adjacent to the proposed development. The planned K109 will run in a north south direction and will connect Olifantsfontein Road (R562) to Dale Road/Archerfish Road. Two access points will be provided off the K109 to the proposed development.
- Planned PWV5: Provincial Class 1 freeway which is planned to run in the east west direction passing the north of the proposed Clayville Extension 50 township.

The 2010 Gauteng Major Road Network is contained in Appendix A-2.

3.2 SURROUNDING ROAD NETWORK

The following roads in the vicinity of the proposed development are regarded as relevant to this study and are discussed in detail below:
\rightarrow Olifantsfontein Road (R562): This is a Class 2 dual carriageway road located to the north of the site which provides a link between the R101 and the R21 national freeway.
\rightarrow Olifantsfontein Road: This is a Class 2 single carriageway road located to the north of the site which provides a link between the R101 and the R562.
\rightarrow Main Road (Future K111): This is a Class 3 single carriageway road which runs in a north south direction pass the east boundary of the site.
\rightarrow Dale Road: This is a Class 3 road located to the west of the site; this road follows a north south west alignment.
\rightarrow Allan Road/Modderfontein Road: This is a Class 3 road located to the west of the site; this road follows a north - south east alignment.

3.3 DETERMINATION OF THE STUDY AREA

In determining the site area TMH 16 volume 1 recommends the following:
\rightarrow "Class 4 and 5 roads in the vicinity of the development up to the first Class 1 to 3 roads that can be reached by the Class 4 and 5 road network from the development, up to and including the first connection(s) on the Class 1 to 3 roads.
\rightarrow The elements shall be restricted to those within a maximum distance of 1.5 km from the accesses to the site, measured along the shortest routes to the accesses, provided that there is at least one intersection within this distance. Where there is no such intersection, the distance will be extended to include at least one intersection."

TMH 16 also states that judgement should be used in selecting the intersections considered and therefore specific elements like extent of the development were also considered. A larger development will by its nature require a wider study area to be considered while for a smaller development the opposite will be true.

4

SITE ACCESS

4.1
 SITE ACCESS

It is proposed that the development be served by two primary accesses off the planned future K109 route. The secondary access to the proposed development is off Main Road (planned future K111 route) and Thabana Ntlenyana Drive. Furthermore a future access is planned 500 m north from the K111/Thabana Ntlenyana Drive intersection. The proposed access positions are shown on drawing SKC001 and SKC002 contained in Appendix A-2.

5
 EXISTING TRAFFIC VOLUMES

5.1 GENERAL

From the traffic count a common peak hour was determined (the busiest hour) for each counted period and was found to be:

$$
\begin{array}{ll}
\rightarrow \text { Weekday AM peak hour } & 06: 45-07: 45 \\
\rightarrow \text { Weekday PM peak hour } & 16: 30-17: 30
\end{array}
$$

The existing 2015 peak hour traffic volumes are shown on Figure 3. The following subheadings provide a brief overview of the existing intersections.

5.2 OLIFANTSFONTEIN ROAD (R562)/OLIFANTSFONTEIN ROAD INTERSECTION

This intersection is currently an all-way stop control and has an overall LOS F during the AM and PM peak hour s. Long queues and high levels of delay have been obs erved on site on the west and east appr oaches during both peak hours. Traffic counts ha ve rev ealed that Olif antsfontein Road (R562) has in the order of 2460 vph and 2800 vph duri ng the AM and PM peak hour s respectively (in and out bound). Therefore Olifantsfontein Road (R562) has approximately 50\% of capacity available.

5.3 OLIFANTSFONTEIN ROAD (R562)/MAIN ROAD (FUTURE K111) INTERSECTION

This intersection is signalised and has an o verall LOS F and LO S B during the AM and PM peak hours re spectively. Long queues and high levels of delay have been observ ed on sit e on the south and west appr oaches during the A M peak hour. Traff ic counts have re vealed that Mai n Road has in the order of 1560 vph and 1160 vph during the AM and PM peak hours respectively (in and outbound). Therefore Main Road is currently operating at capacity.

5.4 MAIN ROAD (FUTURE K111)/THABANA NTLENYANA DRIVE INTERSECTION

This int ersection is currentl y a tw o-way stop c ontrol and has the worst LOS F f or the west approach, right turn movement for both the AM and PM peak hours. The west approach, left turn movement has a LOS B and all other movements have LOS A during both the AM and PM peak hours. Long queues and high levels of delay have been observed on site on the west approach during bot h peak hour s . Thabana Nt lenyana Driv e p rovides access to Cl ayville Extension 45. Traffic from Kaalfontein (township south of Clayville Extension 45) has been ob served using this road for access via Main Road.

5.5 MAIN ROAD (FUTURE K111)/RIVERSIDE STREET INTERSECTION

This intersection is currently at wo-way stop cont rol and has the worst LOSFf ort he east approach during both the AM and PM peak hours. All other approaches have LOS A, LO S B or LOS D for the AM and PM peak hours. Long queues and high levels of delay have been observed on site on the west approach during both peak hours.
Traffic from Iv ory Park and Tembisa Township has been ob served using Riverside Street f or access via Main Road.

5.6 MAIN ROAD (FUTURE K111)/KAREE STREET INTERSECTION

This intersection is signalised and has an overall LOS F during the AM and PM peak hours. Long queues and high l evels of delay ha ve been obs erved on site on the nor th, west and e ast approaches during both peak hours.
Traffic from Iv ory Park and Tembisa Township has been ob served using Riverside Street f or access via Main Road.

5.7 DALE ROAD/ARCHERFISH DRIVE INTERSECTION

This intersection is currently at wo-way stop cont rol and has the worst LOSFf ort he eas t approach during the PM peak hour. Long queues and high levels of delay have been observed on site on the east approach during the PM peak hour. Traffic counts have revealed that Dale Road has in the order of 1470vph and 1195vph during the AM and PM peak hours respectively (in and outbound). Therefore Dale Road is currently operating close to capacity.

5.8 DALE ROAD/MODDERFONTEIN ROAD INTERSECTION

This intersection is signalised and has an overall LOS F and LOS C during the AM and PM peak hours respectively. Long queues and high levels of delay have been observed on site on the north and west approaches during the AM peak hour.

5.9
 DALE ROAD/OLD PRETORIA ROAD INTERSECTION

This intersection is signalised and has an ov erall LOS B during both the AM and PM peak hours. Site observations confirm that queuing and delays related to normal traffic conditions are nominal.

DEVELOPMENT TRIP GENERATION AND TRAFFIC VOLUME SCENARIOS

6.1 ADJUSTMENT FACTORS

Various trip adjustment factors have been introduced into the COTO document to allow for trip reductions. These adjustment factors are discussed briefly below.

MIXED USE DEVELOPMENTS (MUD)

According to the COTO manual "mixed use developments are defined as developments in an area that consist of two or more single-use developments between which trips can be made by means of non-motorised modes of transport (such as walking). This has the net effect of reducing the vehicle trip generation in the area."

Since this development will consist of a mixed land use, the reduction factors which have been applied are listed in Table 2 below. Note, $\mathbf{P}_{\mathbf{m}}=$ Reduction factor for mixed-use development.

LOW VEHICLE OWNERSHIP (LVO) \& VERY LOW VEHICLE OWNERSHIP (VLVO)

According to COTO "the vehicle ownership in areas with high levels of vehicle ownership varies between one or two per household. In areas with a low level of vehicle ownership, the majority of households (more than 50\%) does not own a vehicle and relies on public transport for transportation. In areas with very low level of vehicle ownership, nearly all households (more than 90%) do not own a vehicle and rely on public transportation."

This study considered low to very low vehicle ownership and the reduction factors which have been applied are listed in Table $\mathbf{2}$ below. Note, $\mathbf{P}_{\mathbf{v}}=$ Reduction factor for vehicle ownership.

TRANSIT NODE OR CORRIDORS

According to COTO "the transit reduction factors are applicable to developments that are located within a reasonable walking distance from a major transit node or stops on a major transit corridor."

This study considered transit nodes and a 15% reduction factor has been applied for all land uses as recommended in the COTO manual. See Table $\mathbf{2}$ below. Note, $\mathbf{P}_{\mathbf{t}}=$ Reduction factor for transit nodes or corridors.

Table 2: Adjustment Factors Applied for Trip Reductions

TRIP CODE	$\mathbf{P}_{\mathbf{M}}$	$\mathbf{P}_{\mathbf{V}}$	$\mathbf{P}_{\mathbf{T}}$
Shopping Centre	10%	40%	15%
Residential 1 (single dwelling units)	0%	30%	15%
Residential 2 (single dwelling units)	0%	40%	15%
Apartments \& Flats	0%	50%	15%
Offices	5%	40%	15%
Public Primary School	0%	60%	15%
Public Secondary School	0%	60%	15%

6.2 TRIP SUMMARY

The detailed trip generation calculations are included in Appendix C-1. Using the COTO document the expected peak hour trip generation for the proposed development was calculated and indicated in Table 3 below.

Table 3: Development Generated Trips (Clayville Extensions 50 and 71)

$\begin{gathered} \text { TMH } 17 \\ \text { CODE } \end{gathered}$	LAND USE	EXTENT	AM PEAK			PM PEAK		
			In	Out	Total	In	Out	Total
820	Shopping Centre	$\begin{gathered} 16300 \mathrm{~m}^{2} \\ \text { GLA } \end{gathered}$	60	32	93	262	262	524
820	Shopping Centre	$\begin{gathered} 43300 \mathrm{~m}^{2} \\ \text { GLA } \end{gathered}$	112	60	173	489	489	979
210	Res 1 Single Dwelling Units	595 Units	89	266	354	248	106	354
231	Res 2 Single Dwelling Units	3903 Units	423	1269	1692	1184	508	1692
220	Apartments and Flats	6647 Units	459	1377	1836	1285	551	1836
520	Public Primary School	$\begin{gathered} 1200 \\ \text { Students } \end{gathered}$	173	173	347	61	61	122
530	Public Secondary School	$\begin{gathered} 1200 \\ \text { Students } \end{gathered}$	153	153	306	51	51	102
	TOTAL TRIPS		1691	$\underline{3370}$	$\underline{5061}$	$\underline{3634}$	$\underline{\underline{2237}}$	$\underline{5870}$

The TMH 16 Volume 1 document requires that a traffic impact assessment be done for developments which generate more than 50 peak hour trips.

6.3 GROWTH RATE

TMH 16 Volume 1 requires that a five year horizon be considered for developments that generate more than 50 trips. TMH 17 recommends growth rates for developments as shown in Table 4

Table 4: Typical Traffic Growth Rates
DEVELOPMENT AREA
GROWTH RATES

Low growth areas	$0-3 \%$
Average growth areas	$3-4 \%$
Above average growth areas	$4-6 \%$
Fast growing areas	$6-8 \%$
Exceptionally high growth areas	$>8 \%$

A growth rate of 3% was considered appropriate for this study

6.4 TRAFFIC VOLUME SCENARIOS

The existing 2015 peak hour traffic volumes (see Figure 3) were thus subjected to a 3\% growth rate over five years; this is in line with an above average growth rate as given in Table 4 above. The 2020 bac kground peak hour t raffic volumes are presented on Figure 5. The 2020 background plus total latent rights peak hour traffic volumes are presented on Figure 6.

6.5 TRIP DISTRIBUTION AND ASSIGNMENT

Assumptions with respect to the expected trip distribution were based on the location of the site access in relation to the surrounding road network; the existing traffic volumes, travel patterns as well as the land use nature of the proposed development.

The ex pected trip di stribution and dev elopment gener ated tr affic of the propo sed development can be seen on Figure 7 and Figure 8 respectively. The 2020 background plus total latent rights plus development generated peak hour traffic volumes are presented on Figure 9.

7

TRAFFIC IMPACT AND CAPACITY

 ANALYSIS
7.1 SCENARIOS ANALYSED

The AM and PM peak hour trip generation of the development was analysed. The critical peak hour analysis was considered for the following scenarios:
\rightarrow Scenario 1: 2020 background plus latent rights peak hour traffic volumes
\rightarrow Scenario 2: 2020 background plus latent rights plus development generated peak hour traffic volumes
\rightarrow Scenario 3: 2020 background plus latent rights plus development generated peak hour traffic volumes (with upgrades)

This is in line with TMH16 document requirement for scenarios to be considered in a traffic impact assessment.

7.2 CAPACITY ANALYSIS

7.2.1 Olifantsfontein Road (R562)/Olifantsfontein Road Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 5a.

Table 5a: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Olifantsfontein Road Intersection, Scenario 1
CONTROL: STOP (ALL-WAY)

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	1.202	267.5	F	2.571	1471.7	F
	THROUGH	1.202	268.1	F	2.571	1472.3	F
	RIGHT	1.202	267.7	F	2.571	1471.9	F
	APPROACH	1.202	267.7	F	2.571	1471.9	F
$\begin{aligned} & \text { 号 } \\ & 0 \\ & 0 \\ & 5 \\ & 5 \\ & \stackrel{\sim}{3} \end{aligned}$	LEFT		822.8	F	1.420	436.0	F
		1.868					
	THROUGH	2.541	1421.1	F	3.357	2153.6	F
	RIGHT	2.541	1422.3	F	3.357	2154.7	F
	APPROACH	2.541	1265.3	F	3.357	1864.2	F
0 0 0 I 0 0	LEFT	0.001	8.1	A	0.000	8.1	A
	THROUGH	0.001	8.7	A	0.000	8.7	A
	RIGHT	0.001	8.2	A	0.000	8.2	A
	APPROACH	0.001	8.3	A	0.000	8.4	A
	LEFT	2.415	1304.7	F	2.786	1638.8	F
	THROUGH	2.415	1305.2	F	2.786	1639.3	F
	RIGHT	1.021	130.3	F	1.120	196.3	F
	APPROACH	2.415	1107.7	F	2.786	1407.1	F
ALL VEHICLES		2.541	1113.1	F	3.357	1626.5	F

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 5b.

Table 5b: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Olifantsfontein Road Intersection, Scenario 2

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	1.265	319.8	F	2.803	1683.3	F
	THROUGH	1.256	230.4	F	2.803	1683.9	F
	RIGHT	1.265	319.9	F	2.803	1683.4	F
	APPROACH	1.265	319.9	F	2.803	1683.4	F
号0055$\stackrel{1}{3}$	LEFT	1.843	800.3	F	1.376	398.0	F
	THROUGH	2.852	1698.8	F	4.033	2759.5	F
	RIGHT	2.852	1700.0	F	4.033	2760.5	F
	APPROACH	2.852	1486.6	F	4.033	2427.2	F
$\begin{aligned} & 0 \\ & Z \\ & 0 \\ & 0 \\ & \text { M } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.001	8.1	A	0.000	8.1	A
	THROUGH	0.001	8.7	A	0.000	8.7	A
	RIGHT	0.001	8.2	A	0.000	8.2	A
	APPROACH	0.001	8.3	A	0.000	8.4	A
	LEFT	3.005	1833.0	F	3.221	2028.6	F
	THROUGH	3.005	1833.4	F	3.211	2029.1	F
	RIGHT	1.006	121.9	F	1.116	193.2	F
	APPROACH	3.005	1596.6	F	3.221	1768.7	F
ALL VEHICLES		3.005	3.005	F	4.033	2079.3	F

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an overall LOS B and LOS C during the AM and PM peak hours respectively.

The upgrades required at this intersection are as follows:

- The intersection is required to be signalised
- A dedicated right turn lane is required on the south approach
- A dedicated right turn lane $(60 \mathrm{~m})$ is required on the south approach
- A shared through and left turn lane $(30 \mathrm{~m})$ is required on the south approach
- An additional exit lane $(60 \mathrm{~m})$ is required on the south approach
- A slip lane $(60 \mathrm{~m})$ is required on the east approach
- A dedicated right turn lane $(30 \mathrm{~m})$ is required on the east approach
- An additional right turn lane $(60 \mathrm{~m})$ is required on the west approach

The s ummary of the SI DRA analy sis results for t he upgraded i ntersection are c ontained in Table 5c. Refer to drawing SKC010 contained in Appendix A-3.

Table 5c: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Olifantsfontein Road Intersection, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS
$\begin{aligned} & \text { O} \\ & Z \\ & 0 \\ & 0 \\ & I \\ & 1 \\ & 0 \\ & O \end{aligned}$	LEFT	0.032	36.3	D	0.008	47.7	D
	THROUGH	0.032	30.7	C	0.008	42.2	D
	RIGHT	0.682	41.0	D	0.925	74.7	E
	APPROACH	0.682	40.8	D	0.925	74.6	E
	LEFT	0.386	8.0	A	0.260	8.9	A
	THROUGH	0.695	12.6	B	0.916	32.7	C
	RIGHT	0.029	15.7	B	0.007	20.3	C
	APPROACH	0.695	11.5	B	0.916	29.3	C
	LEFT	0.026	36.2	D	0.008	47.7	D
	THROUGH	0.026	30.7	C	0.008	42.2	D
	RIGHT	0.005	35.7	D	0.004	47.7	D
	APPROACH	0.026	34.3	C	0.008	45.9	D
	LEFT	0.621	11.1	B	0.630	13.1	B
	THROUGH	0.621	5.5	A	0.630	7.2	A
	RIGHT	0.455	16.6	B	0.830	47.9	D
	APPROACH	0.621	7.0	A	0.830	13.0	B
ALL VEHICLES		0.695	11.5	B	0.925	27.0	C

7.2.2 Olifantsfontein Road (R562)/Main Road (Future K111) Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 6a.

Table 6a: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Main Road (Future K111), Scenario 1
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	2.169	1100.7	F	1.500	498.0	F
	THROUGH						
	RIGHT	2.169	1100.3	F	1.500	497.7	F
	APPROACH	2.169	1100.5	F	1.500	497.8	F
	LEFT	1.095	129.4	F	0.617	22.1	C
	THROUGH	0.471	5.8	A	0.590	5.1	A
	RIGHT						
	APPROACH	1.095	47.3	D	0.617	8.2	A
	LEFT						
	THROUGH	0.380	5.3	A	0.571	5.0	A
	RIGHT	2.354	1282.6	F	1.690	684.1	F
	APPROACH	2.354	469.0	F	1.690	108.0	F
ALL VE	CLES	2.354	464.8	F	1.690	113.9	F

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 6b.

Table 6b: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Main Road (Future K111), Scenario 2
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		PM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	2.558	1448.9	F	1.947	897.3	F
	THROUGH						
	RIGHT	2.558	1448.6	F	1.947	897.0	F
	APPROACH	2.558	1448.7	F	1.947	897.1	F
号0055$\stackrel{1}{3}$	LEFT	1.107	138.3	F	0.712	17.9	B
	THROUGH	0.550	6.2	A	0.737	6.0	A
	RIGHT						
	APPROACH	1.107	50.5	D	0.737	8.6	A
	LEFT						
	THROUGH	0.527	6.0	A	0.664	5.4	A
	RIGHT	2.768	1655.7	F	1.977	938.1	F
APPRROACH		2.768	492.6	F	1.977	131.0	F
ALL VEHICLES		2.768	563.8	F	1.977	171.7	F

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour

 Traffic Volumes (with upgrades)Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at and overall LOS C during both the AM and PM peak hours. The Main Road is planned to become the Future K111 route and the additional through lanes were taken into account in this analysis.

The upgrades required at this intersection are as follows:

- A slip lane $(70 \mathrm{~m})$ is required on the south approach
- An additional right turn lane on the south approach
- An additional exit lane on the south approach
- An additional right turn lane $(120 \mathrm{~m})$ is required on the west approach

The s ummary of the SI DRA analy sis results for t he upgraded i ntersection are c ontained in Table 6c. Refer to drawing SKC011 contained in Appendix A-3.

Table 6c: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& Main Road (Future K111), Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
0 1 0 0 1 1 0 0 \mathbf{O}	LEFT	0.499	18.3	B	0.442	36.3	D
	THROUGH						
	RIGHT	0.942	59.3	E	0.870	63.1	E
	APPROACH	0.942	45.8	D	0.870	54.1	D
	LEFT	0.564	9.2	A	0.475	11.3	B
	THROUGH	0.922	42.8	D	0.862	20.7	C
	RIGHT						
	APPROACH	0.922	31.6	C	0.862	18.7	B
	LEFT						
	THROUGH	0.584	11.1	B	0.625	6.9	A
	RIGHT	0.890	39.8	D	0.804	47.7	D
	APPROACH	0.890	19.6	B	0.804	12.4	B
ALL VEHICLES		0.942	30.9	C	0.870	20.8	C

7.2.3 Main Road (Future K111)/Thabana Ntlenyana Drive Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit hincreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 7a.

Table 7a: Summary of SIDRA Intersection Capacity Analysis Results
Main Road (Future K111)/Thabana Ntlenyana Drive, Scenario 1
CONTROL: STOP (TWO-WAY)

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.165	5.6	A	0.116	5.6	A
	THROUGH	0.375	0.0	A	0.337	0.0	A
	RIGHT						
	APPROACH	0.375	1.6	NA	0.337	1.3	NA
	LEFT						
	THROUGH	0.502	0.0	A	0.419	0.0	A
	RIGHT	0.678	22.9	C	0.633	17.7	C
	APPROACH	0.678	4.9	NA	0.633	5.0	NA
	LEFT	1.484	464.3	F	1.170	185.4	F
	THROUGH						
	RIGHT	8.825	7104.5	F	5.246	3891.5	F
	APPROACH	8.825	3804.3	F	5.246	1606.1	F
ALL VEHICLES		8.825	1219.7	NA	5.246	474.1	NA

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 7b.

Table 7b: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562)/Thabana Ntlenyana Drive, Scenario 2

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS
	LEFT	0.269	5.6	A	0.340	5.6	A
O	THROUGH	0.375	0.0	A	0.337	0.0	A
$\xrightarrow{\text { ¢ }}$	RIGHT						
	APPROACH	0.375	2.2	NA	0.340	2.7	NA
	LEFT						
O	THROUGH	0.049	43.7	E	1.143	128.3	F
O	RIGHT	1.199	220.8	F	1.790	740.5	F
	APPROACH	1.199	90.6	NA	1.790	363.7	NA
	LEFT	2.295	1192.5	F	1.941	874.3	F
	THROUGH						
	RIGHT	14.737	12421.1	F	9.158	7403.8	F
APPROACH		14.737	7460.0	F	9.158	3931.2	F
ALL VEHICLES		14.737	2921.2	NA	9.158	1369.0	NA

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an overall LOS C and LOS B during the AM and PM peak hours respectively. The Main Road is planned to become the future K111 route and the additional through lanes were taken into account in this analysis.

The upgrades required at this intersection are as follows:

- The intersection is required to be signalised
- An additional through lane on the north and south approaches
- An additional exit lane on the north and south approaches
- Two dedicated right turn lanes on the west approach
- A slip lane $(100 \mathrm{~m})$ on the west approach
- An additional exit lane is required on the west approach

The s ummary of the SI DRA analy sis results for t he upgraded i ntersection are c ontained in Table 7c. Refer to drawing SKC012 contained in Appendix A-3.

Table 7c: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562)/Thabana Ntlenyana Drive, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS
	LEFT	0.427	8.7	A	0.623	11.3	B
	THROUGH	0.804	28.2	C	0.778	27.8	C
	RIGHT						
	APPROACH	0.804	20.7	C	0.778	20.0	C
	LEFT						
	THROUGH	0.502	10.9	B	0.350	6.5	A
	RIGHT	0.837	34.7	C	0.820	29.7	C
	APPROACH	0.837	17.2	B	0.820	15.5	B
	LEFT	0.679	10.6	B	0.602	9.7	A
	THROUGH						
	RIGHT	0.863	36.3	D	0.804	35.8	D
	APPROACH	0.863	24.9	C	0.804	21.9	C
ALL VEHICLES		0.863	21.2	C	0.820	19.0	B

7.2.4 Main Road (Future K111)/Riverside Street intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 8a.

Table 8a: Summary of SIDRA Intersection Capacity Analysis Results
Main Road (Future K111) \& Riverside Street, Scenario 1
CONTROL: STOP (TWO-WAY)

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT						
	THROUGH	1.431	387.7	F	0.215	0.0	A
	RIGHT	2.510	1408.4	F	0.769	23.1	c
	APPROACH	2.510	765.4	NA	0.769	10.6	NA
	LEFT	9.649	7840.3	F	4.902	3539.3	F
	THROUGH						
	RIGHT	9.649	7843.9	F	4.902	3598.0	F
	APPROACH	9.649	7842.1	F	4.902	3574.7	F
	LEFT	0.070	5.6	A	0.085	5.6	A
	THROUGH	0.665	0.0	A	0.388	0.0	A
	RIGHT						
	APPROACH	0.665	0.6	NA	0.388	0.9	NA
ALL VEHICLES		9.649	2058.7	NA	4.902	756.8	NA

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 8b.

Table 8b: Summary of SIDRA Intersection Capacity Analysis Results
Main Road (Future K111) \& Riverside Street, Scenario 2

APPROACH		OPERATING CONDITIONS					
		PM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT						
	THROUGH	2.918	1725.9	F	0.928	15.4	C
	RIGHT	5.246	3894.9	F	1.238	253.8	F
	APPROACH	5.246	2400.7	NA	1.238	90.5	NA
	LEFT	11.754	9743.5	F	5.831	4379.5	F
	THROUGH						
	RIGHT	11.754	9730.6	F	5.831	4415.7	F
	APPROACH	11.754	9736.8	F	5.831	4402.4	F
	LEFT	0.092	5.6	A	0.099	5.6	A
	THROUGH	0.831	0.0	A	0.498	0.0	A
	RIGHT						
	APPROACH	0.831	0.9	NA	0.498	0.9	NA
ALL VEHICLES		11.754	2677.9	NA	5.831	814.6	NA

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an overall LOS C and LOS B during the AM and PM peak hours respectively. Main Road is planned to become the future K111 route and the additional through lanes were taken into account in this analysis.

The upgrades required at this intersection are as follows:

- The intersection is required to be signalised
- An additional through lane on the north and south approaches
- An additional exit lane on the north and south approaches
- A dedicated full right turn lane is required on the east approach
- A dedicated right turn lane $(60 \mathrm{~m})$ is required on the east approach
- A dedicated slip lane $(60 \mathrm{~m})$ is required on the east approach
- An additional exit lane $(60 \mathrm{~m})$ is required on the east approach

The s ummary of the SI DRA analy sis results for t he upgraded i ntersection are contained in Table 8c. Refer to drawing SKC013 contained in Appendix A-3.

Table 8c: Summary of SIDRA Intersection Capacity Analysis Results
Main Road (Future K111) \& Riverside Street, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT						
	THROUGH	0.251	3.7	A	0.294	4.4	A
	RIGHT	0.860	43.9	D	0.684	24.2	C
	APPROACH	0.860	16.2	B	0.684	10.7	B
00001$\ldots$$\vdots$3	LEFT	0.519	16.6	B	0.203	9.4	A
	THROUGH						
	RIGHT	0.873	47.8	D	0.623	34.4	C
	APPROACH	0.873	32.7	C	0.623	25.3	C
$\begin{aligned} & \text { O} \\ & 0 \\ & \text { O} \\ & \text { O } \\ & \text { I } \\ & \text { O} \end{aligned}$	LEFT	0.188	16.6	B	0.270	20.2	C
	THROUGH	0.856	24.4	C	0.679	18.0	B
	RIGHT						
	APPROACH	0.856	23.7	C	0.679	18.3	B
ALL VEHICLES		0.873	23.3	C	0.684	16.4	B

7.2.5 Main Road/Karee Street Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 9a.

Table 9a: Summary of SIDRA Intersection Capacity Analysis Results
Main Road \& Karee Street, Scenario 1
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
$\begin{aligned} & \text { O} \\ & Z \\ & 0 \\ & 0 \\ & I \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.657	23.1	C	0.974	64.1	E
	THROUGH	0.657	17.5	B	1.860	58.8	E
	RIGHT	1.459	488.3	F	1.860	827.3	F
	APPROACH	1.459	107.5	F	1.860	213.5	F
$\begin{aligned} & \text { 号 } \\ & 0 \\ & 0 \\ & \stackrel{0}{\infty} \\ & \stackrel{\omega}{3} \end{aligned}$	LEFT	1.533	544.9	F	2.034	984.9	F
	THROUGH	1.533	539.3	F	2.034	979.4	F
	RIGHT	1.533	544.9	F	2.034	984.9	F
	APPROACH	1.533	542.8	F	2.034	983.2	F
$\begin{aligned} & \text { O} \\ & \text { Z } \\ & \text { O} \\ & \text { m } \\ & \text { I } \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.745	24.5	C	1.062	120.3	F
	THROUGH	1.422	246.6	F	2.028	152.5	F
	RIGHT	1.422	444.2	F	2.028	979.4	F
	APPROACH	1.422	237.5	F	2.028	287.8	F
	LEFT	1.510	525.2	F	0.938	53.9	D
	THROUGH	1.510	519.7	F	0.938	48.4	D
	RIGHT	1.510	525.2	F	0.938	53.9	D
	APPROACH	1.510	523.4	F	0.938	51.4	D
ALL VEHICLES		1.533	311.7	F	2.034	345.1	F

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 9b.

Table 9b: Summary of SIDRA Intersection Capacity Analysis Results
Main Road \& Karee Street, Scenario 2
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.766	21.7	C	1.254	275.0	F
	THROUGH	0.766	16.2	B	2.394	382.9	F
	RIGHT	1.686	679.3	F	2.394	1296.0	F
	APPROACH	1.686	123.0	F	2.394	502.0	F
号00\ldots5$\stackrel{1}{3}$	LEFT	1.890	862.9	F	2.365	1278.0	F
	THROUGH	1.890	587.3	F	2.365	1272.4	F
	RIGHT	1.890	862.8	F	2.365	1277.9	F
	APPROACH	1.890	860.9	F	2.365	1276.3	F
$\begin{aligned} & 0 \\ & \text { O } \\ & 0 \\ & 0 \\ & \text { I } \\ & 5 \\ & 0 \\ & \hline \end{aligned}$	LEFT	1.012	99.0	F	1.207	234.1	F
	THROUGH	1.933	589.8	F	2.304	373.2	F
	RIGHT	1.933	900.8	F	2.304	1222.5	F
	APPROACH	1.933	552.4	F	2.304	464.5	F
	LEFT	1.562	566.1	F	0.952	54.7	D
	THROUGH	1.562	560.6	F	0.952	49.1	D
	RIGHT	1.562	566.1	F	0.952	54.7	D
	APPROACH	1.562	564.3	F	0.952	52.2	D
ALL VEHICLES		1.933	503.5	F	2.394	544.3	F

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an ov erall LOS B during both the AM and PM peak hours.

The upgrades required at this intersection are as follows:

- A dedicated right turn lane $(100 \mathrm{~m})$ on the north and south approach
- An additional through lane (120m) on the north approach
- A slip lane $(100 m)$ on the north approach
- A slip lane (60m) on the west approach
- A slip lane (60m) on the east approach
- An additional exit lane (30m) on the east approach
- A dedicated right turn lane (30m) on the west and east approach

The s ummary of the SI DRA analy sis results for t he upgraded i ntersection are c ontained in Table 9c. Refer to drawing SKC014 contained in Appendix A-3.

Table 9c: Summary of SIDRA Intersection Capacity Analysis Results
Main Road \& Karee Street, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
0 0 0 0 1 1 0 0 0	LEFT	0.279	12.8	B	0.431	15.4	B
	THROUGH	0.488	8.2	A	0.754	13.4	B
	RIGHT	0.823	39.5	D	0.626	23.2	C
	APPROACH	0.823	13.8	B	0.754	15.2	B
$\begin{aligned} & \text { 号 } \\ & \text { O} \\ & \text { 号 } \\ & \stackrel{\omega}{3} \end{aligned}$	LEFT	0.393	12.2	B	0.216	8.1	A
	THROUGH	0.512	21.7	C	0.334	18.1	B
	RIGHT	0.822	38.5	D	0.908	46.4	D
	APPROACH	0.822	24.2	C	0.908	26.8	C
	LEFT	0.265	11.2	B	0.321	10.7	B
	THROUGH	0.634	9.5	A	0.395	9.5	A
	RIGHT	0.501	20.4	C	0.891	47.1	D
	APPROACH	0.634	10.7	B	0.891	15.2	B
	LEFT	0.303	9.8	A	0.418	14.5	B
	THROUGH	0.434	21.2	C	0.490	19.1	B
	RIGHT	0.800	38.1	D	0.304	27.0	C
	APPROACH	0.800	22.5	C	0.490	18.7	B
ALL VEHICLES		0.823	15.4	B	0.908	17.7	B

7.2.6 Dale Road (Future K109)/Archerfish Drive Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 10a.

Table 10a: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road (Future K109) \& Archerfish Drive, Scenario 1
CONTROL: STOP (TWO-WAY)

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
LEFT							
O	THROUGH	0.906	15.8	C	0.923	18.5	C
$\begin{aligned} & \mathrm{r} \\ & \mathrm{O} \end{aligned}$	RIGHT	0.906	21.5	c	0.923	24.0	C
	APPROACH	0.906	20.1	NA	0.923	23.1	NA
	LEFT	1.954	880.4	F	0.864	37.4	E
	THROUGH						
	RIGHT	1.954	1042.3	F	0.864	144.4	F
	APPROACH	1.954	892.1	F	0.864	44.8	E
$\begin{aligned} & \text { O} \\ & \text { O } \\ & 0 \\ & 0 \\ & \text { I } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.250	5.6	A	0.263	5.6	A
	THROUGH	0.250	0.0	A	0.263	0.0	A
	RIGHT						
	APPROACH	0.250	0.4	NA	0.263	0.7	NA
ALL VEHICLES		1.954	323.6	NA	0.923	20.7	NA

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 10b.

Table 10b: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road (Future K109) \& Archerfish Drive, Scenario 2

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an overall LOS C and LOS B during the AM and PM peak hours respectively. The future K109 alignment is planned to run in a north to south direction passing the site. The K109 alignment will provide a link to Olifantsfontein Road (R562) in the north to K109/Dale road/Archerfish Intersection in the south. Therefore the additional through lanes were taken into account in this analysis.

The upgrades required at this intersection are as follows:

- The intersection is required to be signalised
- An additional through lane on the north and south approach
- An additional exit lane on the north and south approaches
- An additional exit lane (60m) on the north approach
- A dedicated left turn lane $(30 \mathrm{~m})$ on the north approach
- Two dedicated right turn lanes $(60 \mathrm{~m})$ on the south approach
- An additional exit lane (60 m) on the south approach
- A continuous slip lane $(60 m)$ on the east approach
- An additional exit lane $(120 m)$ on the east approach

The summary of the SIDRA analysis results for the upgraded intersection are contained in Table 10c. Refer to drawing SKC015 contained in Appendix A-3.

Table 10c: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road (Future K109) \& Archerfish Drive, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT						
	THROUGH	0.409	2.2	A	0.843	3.4	A
	RIGHT	0.848	47.1	D	0.643	28.0	C
	APPROACH	0.848	21.3	C	0.843	10.8	B
	LEFT	0.398	5.7	A	0.167	5.6	A
	THROUGH						
	RIGHT	0.757	67.8	E	0.644	65.9	E
	APPROACH	0.757	11.5	B	0.644	16.1	B
$\begin{aligned} & \text { O} \\ & 工 \\ & 0 \\ & 0 \\ & \text { I } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.070	17.5	B	0.097	23.1	C
	THROUGH	0.863	27.1	C	0.775	26.1	C
	RIGHT						
	APPROACH	0.863	26.7	C	0.775	25.9	C
ALL VEHICLES		0.863	22.0	C	0.843	16.4	B

7.2.7 Dale Road/Modderfontein Road Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will further perform at a worse level of service wit h i ncreased queui ng and del ays. The summ ary of the SI DRA int ersection results are contained in Table 11a

Table 11a: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road \& Modderfontein Road, Scenario 1
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.419	14.7	B	0.141	10.8	B
	THROUGH	0.593	13.0	B	0.912	34.3	C
	RIGHT	1.205	229.6	F	1.500	496.4	F
	APPROACH	1.205	58.8	E	1.500	171.9	F
$\begin{aligned} & \text { O} \\ & 0 \\ & \text { O} \\ & 0 \\ & \leftarrow \\ & \stackrel{W}{3} \end{aligned}$	LEFT	1.145	179.5	F	0.868	33.2	C
	THROUGH	1.145	174.0	F	0.868	27.6	C
	RIGHT	1.253	272.5	F	1.253	273.2	F
	APPROACH	1.253	193.9	F	1.253	84.7	F
$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & \text { M } \\ & \text { I } \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.350	10.2	B	0.336	10.9	B
	THROUGH	1.394	394.0	F	0.771	19.6	B
	RIGHT	0.940	54.4	D	1.461	462.1	F
	APPROACH	1.394	253.0	F	1.461	138.3	F
	LEFT	1.179	208.8	F	0.895	37.0	D
	THROUGH	1.179	203.3	F	0.895	31.5	C
	RIGHT	2.048	987.0	F	1.310	324.7	F
	APPROACH	2.048	410.2	F	1.310	103.3	F
ALL VEHICLES		2.048	244.3	F	1.500	127.4	F

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

It is evident that the proposed development generated trips added onto the congested intersection will cause f urther queui ng and del ays unl ess upgrad es are undert aken. The summ ary of the SIDRA intersection results are contained in Table 11b.

Table 11b: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road \& Modderfontein Drive, Scenario 2
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.459	19.4	B	0.239	19.2	B
	THROUGH	0.986	61.4	E	1.666	641.9	F
	RIGHT	1.341	351.4	F	2.393	1298.1	F
	APPROACH	1.341	114.9	F	2.393	788.5	F
	LEFT	2.160	1088.2	F	1.400	401.4	F
	THROUGH	2.160	1082.7	F	1.400	395.9	F
	RIGHT	1.791	755.6	F	1.703	676.1	F
	APPROACH	2.160	1049.9	F	1.703	433.6	F
$\begin{aligned} & \text { O} \\ & \text { 1 } \\ & 0 \\ & \infty \\ & \text { I } \\ & \hline 0 \\ & 0 \end{aligned}$	LEFT	0.626	21.3	C	0.805	32.0	C
	THROUGH	2.058	990.9	F	1.683	652.7	F
	RIGHT	1.967	915.0	F	2.514	1406.6	F
	APPROACH	2.058	771.1	F	2.514	674.7	F
	LEFT	1.529	518.6	F	1.824	783.2	F
	THROUGH	1.529	513.1	F	1.824	777.6	F
	RIGHT	2.048	987.0	F	1.502	495.5	F
	APPROACH	2.048	590.6	F	1.824	753.1	F
ALL VEHICLES		2.160	744.7	F	2.514	653.4	F

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at LOS C and LOS D during the AM and PM peak hours respectively.

The upgrades required at this intersection are as follows:

- An additional dedicated right turn lane $(90 \mathrm{~m})$ on the north approach
- An additional through lane (160m) on the north approach
- An additional exit lane $(200 \mathrm{~m})$ on the north approach
- An additional through lane (120m) on the south approach
- An additional dedicated right turn lane $(60 \mathrm{~m})$ on the south approach
- An additional exit lane (200m) on the south approach
- An additional exit lane (60m) on the south approach
- A slip lane (60m) on the east approach
- An additional through lane on the east approach
- An extension of the right turn lane on the east approach (80 m to 120 m)
- An additional exit lane on the east approach
- An additional dedicated right turn lane $(100 \mathrm{~m})$ on the west approach
- An additional through lane on the west approach
- A slip lane (160m) on the west approach
- An additional exit lane on the west approach

The summary of the SIDRA analysis results for the upgraded intersection are contained in
Table 11c. Refer to drawing SKC016 contained in Appendix A-3.

Table 11c: Summary of SIDRA Intersection Capacity Analysis Results
Dale Road \& Modderfontein Drive, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.401	20.0	C	0.116	10.5	B
	THROUGH	0.950	47.0	D	0.536	28.6	C
	RIGHT	0.708	40.1	D	0.957	70.2	E
	APPROACH	0.950	37.4	D	0.957	40.3	D
	LEFT	0.196	5.7	A	0.170	5.6	A
	THROUGH	0.942	38.5	D	0.499	9.8	A
	RIGHT	0.901	48.6	D	0.927	43.2	D
	APPROACH	0.942	34.3	C	0.927	13.4	B
$\begin{aligned} & \text { O} \\ & \text { 1 } \\ & 0 \\ & 0 \\ & I \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	LEFT	0.484	11.7	B	0.577	25.1	C
	THROUGH	0.915	36.9	D	0.602	29.1	C
	RIGHT	0.535	25.6	C	0.892	56.4	E
	APPROACH	0.915	29.4	C	0.892	35.0	D
	LEFT	0.406	12.6	B	0.237	9.6	A
	THROUGH	0.535	11.1	B	1.004	76.1	E
	RIGHT	1.019	79.1	E	0.383	23.0	c
	APPROACH	1.019	22.4	C	1.004	62.9	E
ALL VEHICLES		1.019	30.3	C	1.004	39.9	D

7.2.8 Old Pretoria Road/Dale Road/Kerk Street Intersection

Scenario 1: 2020 Background plus Latent Rights Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will operate at an overall LOS B during both t he AM and PM peak hours. The summary of the SI DRA intersection resul ts are contained in Table 12a.

Table 12a: Summary of SIDRA Intersection Capacity Analysis Results
Old Pretoria Road/Dale Road/Kerk Street, Scenario 1
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS
0 1 0 0 0 1 1 0 0	LEFT	0.136	9.4	A	0.122	7.7	A
	THROUGH	0.190	15.5	B	0.247	18.2	B
	RIGHT	0.651	28.0	C	0.707	32.5	C
	APPROACH	0.651	19.7	B	0.707	21.5	C
	LEFT	0.260	9.7	A	0.214	11.7	B
	THROUGH	0.369	11.2	B	0.231	8.6	A
	RIGHT	0.588	22.5	C	0.251	15.7	B
	APPROACH	0.588	13.2	B	0.251	10.5	B
	LEFT	0.298	9.5	A	0.274	8.5	A
	THROUGH	0.233	15.8	B	0.308	18.6	B
	RIGHT	0.604	26.2	C	0.464	28.1	C
	APPROACH	0.604	17.3	B	0.464	17.3	B
	LEFT	0.056	8.7	A	0.084	7.4	A
	THROUGH	0.293	10.7	B	0.164	8.2	A
	RIGHT	0.643	24.9	C	0.730	23.4	C
APPROACH		0.643	14.3	B	0.730	15.0	B
ALL VEHICLES		0.651	15.6	B	0.730	15.7	B

Scenario 2: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

The SIDRA analysis results indicate that the existing intersection will operate at an overall LOS F during both t he $A M$ and $P \quad M$ peak hour s with the addi tion of development gener ated tr affic. Therefore upgrades are required at this intersection for it to perform at a satisfactory LOS.

The summary of the SIDRA intersection results are contained in Table 12b.
Table 12b: Summary of SIDRA Intersection Capacity Analysis Results
Old Pretoria Road/Dale Road/Kerk Street, Scenario 2
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS
	LEFT	0.151	9.4	A	0.114	8.1	A
	THROUGH	0.237	19.0	B	0.140	8.7	A
	RIGHT	1.863	822.7	F	1.637	619.8	F
	APPROACH	1.863	514.0	F	1.637	434.4	F
	LEFT	0.993	62.5	E	0.701	11.7	B
	THROUGH	0.357	8.7	A	0.437	18.7	B
	RIGHT	1.960	913.5	F	1.908	864.2	F
	APPROACH	1.960	341.4	F	1.908	301.7	F
O000I500	LEFT	0.870	27.9	C	1.964	899.4	F
	THROUGH	0.291	19.3	B	0.174	8.9	A
	RIGHT	0.754	33.2	C	0.262	16.4	B
	APPROACH	0.870	26.6	C	1.964	582.8	F
	LEFT	0.095	17.6	B	0.109	10.3	B
	THROUGH	0.274	8.3	A	0.349	18.1	B
	RIGHT	0.606	21.2	C	1.390	398.4	F
	APPROACH	0.606	12.1	B	1.390	172.7	F
ALL VEHICLES		1.960	253.4	F	1.964	389.5	F

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes (with upgrades)

Intersection upgrades ha ve been conduc ted in t his s cenario and t he SI DRA analy sis res ults indicate that the intersection is expected to perform at an overall LOS C during both the AM and PM peak hours respectively.

The upgrades required at this intersection are as follows:

- An additional dedicated right turn lane $(100 \mathrm{~m})$ on the south and east approach

The summ ary of the SIDRA intersection results are contained in Table 12c. Refer to drawing SKC017 contained in Appendix A-3.

Table 12c: Summary of SIDRA Intersection Capacity Analysis Results
Old Pretoria Road/Dale Road/Kerk Street, Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	$\begin{aligned} & \text { DELAYS } \\ & \text { (SEC) } \end{aligned}$	LOS	V/C	DELAYS (SEC)	LOS
$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & \hline \mathbf{O} \end{aligned}$	LEFT	0.108	10.4	B	0.100	8.3	A
	THROUGH	0.343	18.5	B	0.258	12.2	B
	RIGHT	0.876	41.7	D	0.924	47.7	D
	APPROACH	0.876	32.0	C	0.924	36.6	D
	LEFT	0.778	12.6	B	0.585	10.7	B
	THROUGH	0.815	28.8	C	0.875	35.8	D
	RIGHT	0.860	27.7	C	0.747	25.1	C
	APPROACH	1.960	22.7	C	0.875	23.6	C
$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & \hline \\ & 5 \\ & 5 \\ & 0 \end{aligned}$	LEFT	0.300	5.7	A	0.515	5.7	A
	THROUGH	0.274	18.4	B	0.209	12.1	B
	RIGHT	0.785	35.1	D	0.336	21.7	c
	APPROACH	0.785	15.9	B	0.515	9.0	A
	LEFT	0.058	10.2	B	0.085	8.9	A
	THROUGH	0.626	23.3	C	0.698	28.9	C
	RIGHT	0.465	17.6	B	0.945	43.4	D
	APPROACH	0.626	21.1	C	0.945	32.8	C
ALL VEHICLES		0.876	22.6	C	0.945	24.3	C

7.2.9 Olifantsfontein Road (R562)/ K109 (Intersection A)

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

This intersection will materialise when the future K109 is constructed. Therefore only scenario 3 is analysed. The SI DRA anal ysis results indicate that the intersection will perform at an ov erall LOS B and LOS C during the AM and PM peak hours respectively. The summary of the SIDRA intersection resul ts are c ontained in Table 13. Refer t o drawing SKC018 contained in Appendix A-3.

Table 13: Summary of SIDRA Intersection Capacity Analysis Results
Olifantsfontein Road (R562) \& K109 (Intersection A), Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.659	14.6	B	0.754	19.3	B
	THROUGH						
	RIGHT	0.839	45.5	D	0.929	67.4	E
	APPROACH	0.839	21.0	C	0.929	29.9	C
	LEFT	0.185	8.8	A	0.414	19.2	B
	THROUGH	0.653	21.2	C	0.925	49.4	D
	RIGHT						
	APPROACH	0.653	19.7	B	0.925	43.6	D
	LEFT						
	THROUGH	0.835	9.1	A	0.742	6.8	A
	RIGHT	0.519	14.4	B	0.935	54.2	D
	APPROACH	0.835	10.7	B	0.935	29.8	C
ALL VEHICLES		0.839	16.3	B	0.935	33.8	C

7.2.10 Access Road/K109 (Intersection B)

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

This intersection will materialise when the future K109 is constructed and will provide access to the proposed township development. The SIDRA analysis results indicate that the intersection will perform at an ov erall LOS B and L OS C duri ng the AM and PM peak hour s res pectively. The summary of the SIDRA intersection results are contained in Table 14. Refer to drawing SKC019 contained in Appendix A-3.

Table 14: Summary of SIDRA Intersection Capacity Analysis Results
Access Road \& K109 (Intersection B), Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT	0.069	16.9	B	0.098	10.6	B
	THROUGH	0.452	13.7	B	0.198	5.4	A
	RIGHT	0.615	20.8	C	0.890	33.8	C
	APPROACH	0.615	15.8	B	0.890	20.2	C
	LEFT	0.514	8.1	A	0.374	9.8	A
	THROUGH	0.001	12.0	B	0.001	23.1	C
	RIGHT	0.730	25.1	C	0.919	49.6	D
$\begin{aligned} & 0 \\ & \text { Q } \\ & 0 \\ & 0 \\ & \text { I } \\ & 5 \\ & 0 \\ & 0 \end{aligned}$	APPROACH	0.730	18.3	B	0.919	33.8	C
	LEFT	0.248	5.6	A	0.493	5.7	A
	THROUGH	0.731	30.4	C	0.881	36.1	D
	RIGHT	0.287	32.9	C	0.421	30.0	C
	APPROACH	0.731	17.8	B	0.881	20.5	C
	LEFT	0.201	11.9	B	0.089	8.4	A
	THROUGH	0.001	12.0	B	0.001	23.1	C
	RIGHT	0.175	19.0	B	0.221	30.9	C
APPROACH		0.201	15.4	B	0.221	19.7	B
ALL VEHICLES		0.731	17.3	B	0.919	23.4	C

7.2.11 Access Road/K109 (Intersection C)

Scenario 3: 2020 Background plus Latent Rights plus Development Generated Peak Hour Traffic Volumes

This intersection will materialise when the future K109 is constructed and will provide access to the proposed township development. The SIDRA analysis results indicate that the intersection will perform at an overall LOS C during both the AM and PM peak hours. The summary of the SIDRA intersection resul ts are c ontained in Table 15. Refert o drawing SKC020 contained in Appendix A-3.

Table 15: Summary of SIDRA Intersection Capacity Analysis Results
Access Road \& K109 (Intersection C), Scenario 3
CONTROL: TRAFFIC SIGNAL

APPROACH		OPERATING CONDITIONS					
		AM PEAK HOUR			PM PEAK HOUR		
		V/C	DELAYS (SEC)	LOS	V/C	DELAYS (SEC)	LOS
	LEFT						
	THROUGH	0.157	7.1	A	0.268	4.6	A
	RIGHT	0.814	31.3	C	0.895	35.1	D
	APPROACH	0.814	21.1	C	0.895	21.4	C
	LEFT	0.786	13.6	B	0.477	8.2	A
	THROUGH						
	RIGHT	0.791	32.7	C	0.894	51.1	D
	APPROACH	0.791	22.5	C	0.894	28.1	C
	LEFT	0.205	5.6	A	0.427	5.7	A
	THROUGH	0.802	28.8	C	0.866	43.0	D
	RIGHT						
	APPROACH	0.802	20.5	C	0.866	19.2	B
ALL VEHICLES		0.814	21.5	C	0.895	22.5	C

8

ROAD AND INTERSECTION UPGRADES

8.1

GENERAL

The upgrades to the major road network and intersections are discussed in this chapter. Table 16 illustrates the upgrades required to mitigate congestion on the surrounding road network within the vicinity of the proposed development sites. The upgrades are differentiated for EMM and GDRT.

Table 16: Major Road and Intersection Upgrades Required Within the Vicinity of the Proposed Township Development

Extension	Phases	UPGRADESSPUTBEIWETNEMM ANDGDRT AUTHORTIES	
		EMM UPGRADES	GDRT UPGRADES
71	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	- Intersedion 1 upgrades as discussed in Section 7.2.1. - Intersection 2upgrades for the west and east approach as discussed in Section 7.2.2. A 70 m slip lane and the first 100 m additional right turn lane is required on south approach. - Intersection 3upgrades for the west approach as discussed in Section 7.2.3. A 90m slip lane is required on the south approach. - The access road (single carriageway) between intersection C and intersection 3 - Intersection 7 upgrades as discussed in Section 7.2.7. - Intersection 8 upgrades as discussed in Section 7.2.8. - Intersection 6 upgrades as discussed in Section 7.2.6. - The construction of intersection Bas discussed in Section 7.2.10.	-The future K111: Construction of the additional through lane (south bound) from intersedion 2 to intersection 3. - Construction of the additional through lane (south bound) from intersection $\mathbf{3}(100 \mathrm{~m})$. - The future K109: Construction of a singlecomiageway of theK109from intersection 6 to the site access at intersection C . - Intersedion Cto connect to the K109 construction discussed above so that access to the site will be gained from the south approach. - The future K111: Construction of the additional through lane (north bound) from intersection 4 to intersection 3. - The future K109: Construction of the remaining carriageway (dual carriageway) of the K109 from intersection 6 to the site access at intersection C - The future K111: Construction of the additional through lane (north bound) from intersection 5to intersection 4 - The future K111: Construction of the additional through lane (north bound) from intersection 3 to intersection $\mathbf{2}$ and the additional through lane (south bound) from intersection $\mathbf{3}$ to intersection 5 . This will complete the construction of the dual carriageway. - The construction of the additional lanes between intersection Cand intersection 3and creating a dual carriageway. - The construction of intersectionAas discussed in Section 7.2.9. - The future K109: Construction of the single carriageway between intersection Aand intersection C - The future K109: Construction of the remaining carriageway between intersection Cand intersection A creating a dual carriageway.
50	TBA		

9

NON-MOTORISED AND PUBLIC TRANSPORT

9.1 BACKGROUND

In terms of the National Land Transport Act 5 of 2009, section 38, it is a requirement that an assessment of the public transport be included in a traffic impact assessment.

9.2 EXISTING PUBLIC TRANSPORT SERVICES AND FACILITIES

The area surrounding the proposed development site is currently served by the following public transport services:

MINIBUS TAXIS

Minibus taxis were observed operating on Main Road, Archerfish Drive and Dale Road.

PUBLIC TRANSPORT LAY-BYS

Taxi/Bus lay-bys are provided near the following intersections:

- A pair of lay-bys along Main Road near the Main Road/Riverside Street Intersection
- A pair of lay-bys along Main Road nears the Main Road/Thabana Ntlenyana Drive Intersection.

$9.3 \quad$ PROPOSED / NEW FACILITIES

PUBLIC TRANSPORT LAY-BYS

It is recommended that K109 be provided with a pair of public transport lay-bys in the form of bus and taxi stops at each access point where access to the township is gained. It is further recommended that the proposed lay-bys be constructed to the appropriate design standards of the relevant roads authority.

PAVED SIDEWALKS

In order to ease and formalise the movement of pedestrians between site accesses and the recommended lay-bys, it is proposed to construct at least 1.5 m wide paved (or dust free) sidewalk along at least one side of all roads within the development.

CONCLUSIONS AND

 RECOMMENDATIONSBased on the assessment of the existing and planned future road network, traffic counts, a traffic analysis and capacity analysis of road links in the study area, the following concluding remarks are relevant:
\rightarrow This Traffic Impact Assessment pertains to the proposed township known as Clayville Extensions 50 and 71. Clayville Extension 50 will be situated on the Remainder of Portion 183 and Portions 30 and 31 of the farm Olifantsfontein 410 JR. Clayville Extension 71 will be situated on Portion 207 of Portion 183 of the farm Olifantsfontein 410 JR.
\rightarrow The site is currently undeveloped. The township locality and the surrounding road network are indicated on Figures 1 and 2.
\rightarrow This proposed township will comprise of residential, business, community facilities, public garage and social services as indicated in the schedule of rights attached in Appendix A-1.
\rightarrow Detailed traffic surveys were carried at the following intersections:

- Olifantsfontein Road (R562)/Olifantsfontein Road
- Olifantsfontein Road (R562)/Main Road (Future K111)
- Main Road (Future K111)/Thabana Ntlenyana Drive
- Main Road (Future K111)/Riverside Street
- Main Road (Future K111)/Karee Street
- Dale Road/Archerfish Drive
- Dale Road/Modderfontein Road
- Dale Road/Old Pretoria Road
\rightarrow The proposed development is expected to generate approximately 5061 trips and 5870 trips (in and outbound) during the Weekday AM and PM peak hours respectively on the external road network. See Appendix A4.
\rightarrow It is proposed that the development be served by two primary accesses off the planned future K109 route. The secondary access to the proposed development is off Main Road (planned future K111 route) and Thabana Ntlenyana Drive. Furthermore a future access is planned 500m north from K111/Thabana Ntlenyana Drive intersection. The proposed access positions are shown on drawing SKC001 and SKC002 contained in Appendix A-2.
\rightarrow From the analysis performed, it was found that the impact of the proposed developments can be mitigated by means of a number of road and intersection improvements as shown in Appendix A-3.
\rightarrow The 2020 background traffic plus latent rights traffic show that the there is an existing capacity constraint. Therefore the developers of the latent rights developments are required to contribute towards roads and intersection upgrades. The upgrading will be as per the requirements of EMM and GDRT.
\rightarrow The 2010 Gauteng Major Road Network shows the planned K109 and K111 provincial roads which are relevant to this development. See Appendix A-2.
\rightarrow The following existing intersections will require improvements:

[^0]- Olifantsfontein Road (R562)/Main Road (Future K111)
- Main Road (Future K111)/Thabana Ntlenyana Drive
- Main Road (Future K111)/Riverside Street
- Main Road (Future K111)/Karee Street
- Dale Road/Archerfish Drive
- Dale Road/Modderfontein Road
\rightarrow The following new intersections external to the development are required:
< Olifantsfontein Road (R562)/K109 (Intersection A)
< Access Road (R562)/K109 (Intersection B)
< Access Road (R562)/K109 (Intersection C)
\rightarrow The road and intersection upgrades will be in accordance with the phasing of the project. The upgrades are listed in Table 16 contained in Chapter 8.
\rightarrow The following are required in terms of Non-Motorised \& Public Transport
- It is recommended that K109 be provided with a pair of public transport lay-bys in the form of bus and taxi stops at each access point where access to the township is gained. It is further recommended that the proposed lay-bys be constructed to the appropriate design standards of the relevant roads authority.
- In order to ease and formalise the movement of pedestrians between site accesses and the recommended lay-bys, it is proposed to construct at least 1.5 m wide paved (or dust free) sidewalk along at least one side of all roads within the development.

From a traffic engineering perspective, the proposed development is thus regarded as feasible and sustainable and is therefore supported.

REFERENCES

\rightarrow TMH 16 Volume 2, South African Traffic Impact and Site Traffic Assessment Standards and Requirements Manual, Version 1.0, Committee of Transport Officials (COTO) August 2012
\rightarrow TMH 17 Volume 1, South African Trip Data Manual, Version 1.0, Committee of Transport Officials (COTO) September 2012
\rightarrow Highway Capacity Manual, Transportation Research Board, National Research Council Washington D.C., 2010
\rightarrow Manual for Traffic Impact Studies, Department of Transport (DOT), October 1995
\rightarrow Clayville Extensions 52 \& 66 Retail Development, Traffic Impact Study, EDS Engineering Design Services, May 2015
\rightarrow Tembisa Extension 25 Residential Development, Traffic Impact Study, GIBB Engineering \& Architecture, May 2015
\rightarrow Remainder of Portion 122 of The Farm Olifantsfontein 402-JR Industrial Development, Traffic Impact Study, EDS Engineering Design Services, March 2013
\rightarrow Sterkfontein Extension 12 Warehousing \& Distribution Centre Development, Traffic Impact Study, EDS Engineering Design Services, February 2015

FIGURES

Figure 1: Locality Plan
Figure 2: Site Aerial View \& Key Plan
Figure 3: Existing 2015 Peak Hour Traffic Volumes
Figure 4a: Latent Development Peak Hour Traffic Volumes - Clayville Extensions 52 \& 66
Figure 4b: Latent Development Peak Hour Traffic Volumes - Tembisa Extension 25
Figure 4c: Latent Development Peak Hour Traffic Volumes - Remainder of Portion 122 Olifantsfontein

Figure 4d: Latent Development Peak Hour Traffic Volumes - Sterkfontein X12
Figure 4e: Latent Development Peak Hour Traffic Volumes - Clayville Extension 45
Figure 4f: Total Latent Development Peak Hour Traffic Volumes
Figure 5: 2020 Background Peak Hour Traffic Volumes
Figure 6: 2020 Background Plus Total Latent Development Peak Hour Traffic Volumes
Figure 7: Expected Trip Distribution for the Proposed Development
Figure 8: Development Generated Peak Hour Traffic Volumes
Figure 9: 2020 Background Plus Total Latent Development Plus Development Generated Peak Hour Traffic Volumes

Project:

APPENDIX A-1
SITE DEVELOPMENT PLAN \& SCHEDULE OF RIGHTS TABLES

Table 1: Proposed zoning \& development controls for the proposed Clayville Extension 50 Township.

ZONING	LAND USE	NO OF ERVEN / UNITS	DEVELOPMENT CONTROLS
Residential 1	Dwelling Houses $400 \mathrm{~m}^{2}$ ($25 \mathrm{du} / \mathrm{ha}$)	5	Density: 25 du/ha; Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
Residential 2	Dwelling Houses $160 \mathrm{~m}^{2}$ ($60 \mathrm{du} / \mathrm{ha}$)	6	Density: 60 du/ha; Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
	Dwelling Houses $180 \mathrm{~m}^{2}$ ($55 \mathrm{du} / \mathrm{ha}$)	6	Density: 55 du/ha; Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
	Dwelling Houses $216 \mathrm{~m}^{2}$ ($45 \mathrm{du} / \mathrm{ha}$)	4	Density: 45 du/ha; Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1m on All Sides
Residential 4	Dwelling Houses, Dwelling Units, Residential Buildings And Private Roads (180 du/ha)	$\begin{array}{\|l\|} \hline 13 \\ \text { (2833 } \\ \text { Units) } \end{array}$	Density: 180 du/ha; Height: 4 Storeys; Coverage: 60\% Parking: 0.5 Parking Bays Per Unit; Building Lines: 2 m on all sides
Community Facility	Places of Education	1	Height: As Per Scheme (3 Storeys); Coverage: As Per Scheme (50\%); Parking: As Per Scheme; Building Lines: As Per Scheme (5m On All Street Boundaries \& 3m On All Other Boundaries)
	Places Of Instruction, Places Of Education, Social Halls, Places Of Public Worship, Libraries, Child Care Facilities, Sport And Recreation Clubs, Sports Grounds, Monasteries, Convents	3	Height: As Per Scheme (3 Storeys); Coverage: As Per Scheme (50\%); Parking: As Per Scheme; Building Lines: As Per Scheme (5m On All Street Boundaries \& 3m On All Other Boundaries)
Business 2	For Business Purposes, Shops, Places Of Public Worship, Places Of Instuction, Places Of Education, Dwelling Units, Residential Buildings, Restaurants, Medical Consulting Rooms, Gymnasium, Plant Nurseries, Service Industries, Parking Bays, Parking Garages	2	Height: As Per Scheme (2 Storeys) ; Coverage: As Per Scheme (70\%); Parking: As Per Scheme; Building Lines: As Per Scheme (3m On Street Boundaries)
Business 3	Offices, Medical Consulting Rooms, Dwelling	2	Height: As Per Scheme (2

	Houses		Storeys) ; Coverage: As Per Scheme (70\%); Parking: As Per Scheme; Building Lines: As Per Scheme (3m On Street Boundaries)
Public Services	Produce Markets, Abattoirs, Cemeteries, Water Works, Reservoirs, Gas Works, Power/Sub Stations, Mortuaries, Sewage Disposal Works, Waste Disposal Sites, Municipal Purposes, Postal Depots, Telecommunications, Parking, Swimming Pools, Stormwater Retention And Attenuation Ponds	3	As per Scheme
Social Services	Hospitals, Clinics, Libraries, Police Stations, Law Courts, Fire Stations, Municipal \& Government Offices, Institutions, Places Of Public Worship, Places Of Instruction, Child Care Facilities, Social Halls, Old Age Home	3	As per Scheme
Transportation	Transport Centers, Taxi Ranks, Parking Bays, Parking Garages	1	As per Scheme
Public Open Space	Parks, Gardens, Botanical Gardens, Zoological Gardens, Conservation Areas, Art Galleries, Sport \& Recreation Clubs, Social Halls, Open Spaces, Play Parks, Squares And Buildings Used In Connection Herewith, Municipal Purposes, Sports Grounds, Swimming Pools, Stormwater Retention \& Attenuation Ponds.	4	As per Scheme
Special	Electrical Powerlines \& Municipal Services	3	As per Scheme
Roads	Streets/Roads, Private Roads, Toll Gates, Weigh Bridges, Parking, Cycle Lanes, Bus Lanes, Municipal Services And Infrastructure		As Per Scheme

[^1]

Table 1: Proposed zoning \& development controls for the proposed Clayville Extension 71, 76-80 Township.

ZONING	LAND USE	NO OF ERVEN / UNITS	DEVELOPMENT CONTROLS
Residential2	Dwelling Houses $9 \mathrm{~m} \times 18 \mathrm{~m}=160 \mathrm{~m}^{2}$	1369	Density: As Per Scheme (One Dwelling Per Erf); Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
	Dwelling Houses $9 \mathrm{~m} \times 20 \mathrm{~m}=180 \mathrm{~m}^{2}$	420	Density: As Per Scheme (One Dwelling Per Erf); Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
	Dwelling Houses $9,8 \mathrm{~m} \times 22 \mathrm{~m}=216 \mathrm{~m}^{2}$	431	Density: As Per Scheme (One Dwelling Per Erf); Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%) ; Parking: As Per Scheme (One Parking Bay Per Erf); Building Lines: 1 m on All Sides
$\begin{gathered} \text { Residential } \\ 4 \end{gathered}$	Dwelling Houses, Dwelling Units, Residential Buildings And Private Roads	13 (3814 Units)	Density: 180 du/ha; Height: 4 Storeys; Coverage: 60\% Parking: 0.5 Parking Bays Per Unit; Building Lines: 2 m on all sides
Business 2	For Business Purposes, Shops, Places Of Public Worship, Places Of Instuction, Places Of Education, Dwelling Units, Residential Buildings, Restaurants, Medical Consulting Rooms, Gymnasium, Plant Nurseries, Service Industries, Parking Bays, Parking Garages	2	Height: As Per Scheme (2 Storeys) ; Coverage: As Per Scheme (70\%); Parking: As Per Scheme; Building Lines: As Per Scheme (3m On Street Boundaries)
Public Garage	Filling Station, Car Wash, Motor Dealers, Motor Workshops	1	Height: As Per Scheme (2 Storeys); Coverage: As Per Scheme (60\%); Parking: As Per Scheme; Building Lines: As Per Scheme (3m On Street Boundaries \& 5m On All Other Boundaries)
Public Open Space	Parks, Gardens, Botanical Gardens, Zoological Gardens, Conservation Areas, Art Galleries, Sport \& Recreation Clubs, Social Halls, Open Spaces, Play Parks, Squares And Buildings Used In Connection Herewith, Municipal Purposes, Sports Grounds, Swimming Pools, Stormwater Retention \& Attenuation Ponds.	48	As per Scheme
Community Facility	Places of Education	1	Height: As Per Scheme (3 Storeys); Coverage: As Per Scheme (50\%); Parking: As Per Scheme; Building Lines: As Per Scheme (5m On All Street

			Boundaries \& 3m On All Other Boundaries)
	Places Of Instruction, Places Of Education, Social Halls, Places Of Public Worship, Libraries, Child Care Facilities, Sport And Recreation Clubs, Sports Grounds, Monasteries, Convents	7	Height: As Per Scheme (3 Storeys); Coverage: As Per Scheme (50\%); Parking: As Per Scheme; Building Lines: As Per Scheme (5m On All Street Boundaries \& 3m On All Other Boundaries)
Social Service	Hospitals, Clinics, Libraries, Police Stations, Law Courts, Fire Stations, Municipal \& Government Offices, Institutions, Places Of Public Worship, Places, Of Instruction, Child Care Facilities, Social Halls, Old Age Home	2	As per Scheme
Public Services	Produce Markets, Abattoirs, Cemeteries, Water Works, Reservoirs, Gas Works, Power/Sub Stations, Mortuaries, Sewage Disposal Works, Waste Disposal Sites, Municipal Purposes, Postal Depots, Telecommunications, Parking, Swimming Pools, Stormwater Retention And Attenuation Ponds	2	As per Scheme
Special	Electrical Powerlines \& Municipal Services	3	As per Scheme
Roads	Streets/Roads, Private Roads, Toll Gates, Weigh Bridges, Parking, Cycle Lanes, Bus Lanes, Municipal Services And Infrastructure	As Per Scheme	

[^2]
APPENDIX A-2

ROAD NETWORK PLANNING \& GAUTENG STRATEGIC NETWORK PLAN

EXISTING INTERSECTION LAYOUTS

1. SITE LAYOUT

ज़ा०5 Site: 2015 AM
Olifantsfontein Rd (R562) \& Olifantsfontein Rd Intersection - 2015 AM Peak Hour Traffic Volumes Stop (All-Way)

2. SITE LAYOUT

E Site: 2015 AM
Olifantsfontein Rd (R562) \& Future K111-2015 AM Peak Hour Traffic Volumes
Signals - Fixed Time Isolated

3. SITE LAYOUT

जТञा) Site: 2015 AM

Future K111 \& Thabana Ntlenyana Drive - 2015 AM Peak Hour Traffic Volumes
Stop (Two-Way)

4. SITE LAYOUT

งง0F Site: 2015 AM
Future K111 \& Riverside St - 2015 AM Peak Hour Traffic Volumes
Stop (Two-Way)

5. SITE LAYOUT

B Site: 2015 AM

Future K111 \& Karee St - 2015 AM Peak Hour Traffic Volumes
Signals - Fixed Time Isolated

6. SITE LAYOUT

ज50\% Site: 2015 AM
Dale Rd \& Archerfish Dr - 2015 AM Peak Hour Traffic Volumes
Stop (Two-Way)

7. SITE LAYOUT

Site: 2015 AM
Dale Rd \& Modderfontein Rd - 2015 AM Peak Hour Traffic Volumes
Signals - Fixed Time Isolated

8. SITE LAYOUT

Site: 2015 AM

Dale Rd \& Old Pretoria Rd - 2015 AM Peak Hour Traffic Volumes
Signals - Fixed Time Isolated

UPGRADED / NEW INTERSECTION LAYOUTS

Please note: All upgrades mentioned in this appendix which are due to the developer or others are a guide and are required to be agreed and confirmed with EMM and GDRT. The phasing of upgrades are discussed in Chapter 8.

1. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Olifantsfontein Rd (R562) \& Olifantsfontein Rd Intersection
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- No upgrades are due to developer since this intersection is currently congested and the background traffic volumes affect capacity in the horizon year.

2. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Olifantsfontein Rd (R562) \& Future K111
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- The intersection is currently congested. However the developer will be responsible for the upgrade of the right turn lane on the west approach. The developer will contribute to the upgrade of the future K111. Note that the existing Main Road (future K111 route) is currently operating at capacity.

3. SITE LAYOUT

目 Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Future K111 \& Thabana Ntlenyana Drive
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- Upgrade of the west approach leg of this intersection.
- Upgrade of a slip lane and the right turn lane on the south and north approach respectively.

4. SITE LAYOUT

8 Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Future K111 \& Riverside St
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- No upgrades are due to the developer as this intersection is a background problem.

5. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Future K111 \& Karee St
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- No upgrades are due to the developer as this intersection is a background problem.

6. SITE LAYOUT

Bite: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Dale Rd \& Archerfish Dr
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- The developer will be required to contribute to the upgrade of the link (Dale Road)

7. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Dale Rd \& Modderfontein Rd
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- The developer will be required to contribute to the upgrade of the link (Dale Road)
- Other upgrades to this intersection are not for the account of the developer as this intersection currently operates at capacity.

8. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Dale Rd \& Old Pretoria Rd
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour
Signals - Fixed Time Isolated

Upgrades due to developer:

- Upgrade of the right turn lane on the south and east approach.

A. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Olifantsfontein Rd (R562) \& K109 Intersection
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- Upgrade of the right turn lane on the west approach.
- Upgrade of the slip lanes and one right turn lane on the south approach.
- Upgrade of the exit lane on the south approach.
- Upgrade of the left turn lane on the east approach.
- Other upgrades are not for the account of the developer.

B. SITE LAYOUT

Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
K109 \& Access Road Intersection B
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- Upgrade of the west and east approach.
- Upgrade of the left and right turn lanes on the south approach.
- Upgrade of the left and right turn lanes on the north approach.
- The developer will be required to contribute to the upgrade of the K109 link.

C. SITE LAYOUT

目 Site: Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
K109 \& Access Road Intersection C
Dev Plus 2020 Background Plus Latent Dev_AM Peak Hour_UPGRADES
Signals - Fixed Time Isolated

Upgrades due to developer:

- Upgrade of the east approach.
- Upgrade of the right turn lane on the south approach.
- Upgrade of the left turn lanes on the north approach.

APPENDIX A-4
TRIP GENERATION CALCULATIONS

[^0]: - Olifantsfontein Road (R562)/Olifantsfontein Road

[^1]: * Proposed Zonings are in terms of the Ekurhuleni Town Planning Scheme, 2014.

[^2]: * Proposed Zonings are in terms of the Ekurhuleni Town Planning Scheme, 2014.

